

Energy Savings with Pump Systems

- ➤ How important are pump systems?
- ➤ Some pump system theory
- ➤ Prescreen pump systems: the VITAL FEW and the trivial many
- ➤ Identifying energy savings opportunities

Big Picture Perspectives: **Industrial Motor Systems**

- ➤ Are the *single largest* electrical end use category in the American economy
- ➤ Account for 25% of U.S. electrical sales

University City Science Center

The Bernoulli equation is slightly modified to account for friction:

Pipe friction loss estimates are usually based on an equation referred to as Darcy-Weisbach

This equation is very useful to understand what parameters influence frictional losses in piping:

$$H_f = f \cdot \frac{L}{d} \cdot \frac{V^2}{2g}$$

 $H_f =$ pressure drop due to friction (ft)

Darcy friction factor pipe length (ft)

pipe diameter (ft)

velocity head (ft)

University City Science Cente

<u>Component</u> friction losses are primarily dependent on experimental data

For pipe components, frictional losses have generally been estimated based on the velocity head.

$$H_f = K \cdot \frac{V^2}{2g}$$
 $K = Loss coefficient$
 $\frac{V^2}{2g}$
 $2g = velocity head$

K is a function of size, and for valves, the valve type, and valve % open.

University City Science Center

ITEM Division

Pump affinity laws can be used to predict pump curves for different speeds and impeller diameters

$$\frac{\text{Speed}}{\begin{pmatrix} Q_{1} \\ Q_{2} \end{pmatrix}} = \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}^{1} \qquad \begin{pmatrix} Q_{1} \\ Q_{2} \end{pmatrix} = \begin{pmatrix} D_{1} \\ D_{2} \end{pmatrix}^{1}$$

$$\begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix} = \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}^{2} \qquad \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix} = \begin{pmatrix} D_{1} \\ D_{2} \end{pmatrix}^{2}$$

$$\begin{pmatrix} P_{1} \\ P_{2} \end{pmatrix} = \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}^{3} \qquad \begin{pmatrix} P_{1} \\ P_{2} \end{pmatrix} = \begin{pmatrix} D_{1} \\ D_{2} \end{pmatrix}^{3}$$

$$Q = \text{flow rate} \quad H = \text{head} \quad P = \text{power} \quad N = \text{speed} \quad D = \text{diameter}$$

12

University City Science Center

Symptom	Likely Reason	Best Solutions
Throttle valve-controlled systems	Oversized pump	Trim Impeller, Smaller Impeller, ASD
Bypass line (partially or completely) open	Oversized pump	Trim Impeller, Smaller Impeller, ASD
Multiple parallel pump system with the same number of pumps	Pump use not monitored or controlled	Install controls
Constant pump operation in a batch environment	Wrong system design	On-off controls
Frequent batch operation in a continuous process	Wrong system design	Match pump capacity with system requirement
Presence of cavitation noise (at pump or elsewhere in the process)	Various	Depends on cause
High maintenance cost (seals, bearings). Talk to operations	Pump operated far away from B.E.P.	Match pump capacity with system requirement

Corrections for oversized pumps include:

- ➤ Replace the impeller of the existing pump with a smaller impeller
- ➤ Trim the outside diameter of the existing impeller
- ➤ Use an adjustable speed drive (ASD) to drive the pump

20

University City Science Center
ITEM Division

